七六启网

宇宙中最高的温度能达到多少?目前最高的温度是多少?_恐惧新星普朗克什么时候出的

admin

本文目录一览

超出科学家们的理解,为什么黑洞会变得这么大?

宇宙中最高的温度能达到多少?目前最高的温度是多少?_恐惧新星普朗克什么时候出的-第1张-游戏相关-七六启网

在早期宇宙中存在超大质量黑洞对天文学家来说从来没有多大意义。2006年以来的观测表明,宇宙还不到10亿年的时候,10亿个太阳质量的巨兽就已经存在了——用传统方法形成它们还太早。

耶鲁大学的理论天体物理学家Priyamvad Natarajan说,这些古老的巨人中有一两个可以被认为是怪物。但到目前为止,天文学家已经发现了超过100个超大质量黑洞,它们存在于宇宙诞生之前的9.5亿年前。“他们的人太多了,现在不可能是怪胎了。”“对于这些事情是如何发生的,你必须有一个自然的解释,”她说。

通常的假设是,这些黑洞要么诞生时大得出乎意料,要么生长得非常快。但最近的发现甚至挑战了这些理论,并可能迫使天文学家重新思考这些黑洞是如何成长的。

在现代宇宙中,黑洞通常是由大质量恒星形成的,它们在自身的引力作用下,在生命结束时坍缩。它们通常从小于100个太阳质量开始,通过与另一个黑洞合并或从环境中吸收气体而增长。

这些气体通常被组织成一个圆盘,螺旋进入黑洞,摩擦将圆盘加热到白热的温度,在数十亿年的时间里产生明亮的光芒。这些吞噬气体的黑洞被称为类星体。类星体吃得越快,它的圆盘就变得越亮。

但是,气体的发光也限制了黑洞的增长:明亮的圆盘光子赶走了新鲜的物质。这为给定质量的黑洞的增长速度设定了一个物理极限。天文学家用一个叫做爱丁顿极限的术语来描述黑洞吞噬的速率,用来测量黑洞实际的亮度,以及如果它吞噬得更快,它会有多亮。

但是,气体的发光也限制了黑洞的增长:明亮的圆盘光子赶走了新鲜的物质。这为给定质量的黑洞的增长速度设定了一个物理极限。天文学家用一个叫做爱丁顿极限的术语来描述黑洞吞噬的速率,用来测量黑洞实际的亮度,以及如果它吞噬得更快,它会有多亮。

超出科学家们的理解,为什么黑洞会变得这么大?

一个挑剔的食客。

天文学家在早期宇宙中仅测量了大约20个超大质量黑洞的爱丁顿极限。大多数似乎都在以今天宇宙中类星体的十分之一的速度吞噬它们的极限。这些剧烈的吞噬速度似乎仍然与黑洞的超大质量相矛盾:一个100倍太阳质量的黑洞在这个极限下应该需要8亿年积累到10亿太阳质量,即使考虑到它在成长过程中吞噬速度更快。这8亿年还不包括最初形成黑洞的时间。

但是韩国首尔国立大学的物理学家Myungshin Im和他的同事担心之前的观察漏掉了一些挑食的人,因为吃得快的人更聪明,更容易被发现。如果一些早期的大质量黑洞是懒惰的捕食者,它们的超大尺寸将变得更加令人困惑——并可能排除一些关于它们如何成长的理论。

因此,该团队在2015年9月智利拉斯坎帕纳斯天文台(Las Campanas observatory)进行的一项调查中,刻意寻找较暗的遥远类星体。

研究人员发现,IMSJ 204+0112是一个10亿太阳质量的黑洞,限制了以十分之一的速度进食,自宇宙诞生约9.4亿年以来就一直如此。但该团队在2月9日表示,在宇宙达到80亿岁之前,黑洞不会完全成熟。

超出科学家们的理解,为什么黑洞会变得这么大?

“我们第一次证明了早期宇宙中低爱丁顿极限类星体的存在,”伊姆说。

IMSJ 204+0112是迄今为止发现的最迟钝的类星体,但它不是唯一的。去年11月,德国马克斯·普朗克天文研究所的物理学家基娅拉·马祖切利(Chiara Mazzucchelli)和他的同事在《天体物理学杂志》(Astrophysical Journal)上发表报告称,当11个庞大的超大质量黑洞存在时,宇宙的年龄还不到8亿年。

这些类星体的平均质量约为16.2亿太阳质量,但其吞噬速度被限制在40%左右,该团队说。奇怪的是,星状星云中最大的黑洞HSC J1205-0000的摄食速率最低:它的质量是47亿太阳质量,但只消耗其极限的6%。

在早期宇宙中发现超大质量的黑洞会很奇怪,但这些挑食的黑洞就更难解释了。

天文学家希望在更早的时间对黑洞进行观测将有助于发现可能长成巨大黑洞的“种子”黑洞。如果一些黑洞一开始就很大,质量从1万到100万个太阳,它们可能会变得更大,要么相互融合,要么达到爱丁顿极限。

热寂说的提出及其影响

热寂说的提出及其影响

  对热寂说的历史进行了较系统的考察,并对其产生的社会影响及批判作了较系统的探讨和阐述。全文分四部分:一、全面回顾了在科学史上热寂说是怎样提出的,以及一经提出后引发的各种争论及争论的焦点;二、分析了热寂说提出后产生的重大社会影响;三、着重介绍及评述了对热寂说进行的各种批判,重点是对后世影响较大的两个代表性说法恩格斯对热寂说的批判及较流行的各种观点;四、阐述和探讨了?大爆炸?的宇宙理论及其三个强有力的直接论据,以及引力对宇宙膨胀的作用,从而最终证明宇宙热寂说是不可实现的。

  [关键词]热寂说;熵增加原理;近代宇宙论

  ?热寂说?是热力学第二定律的宇宙学推论,它既是哲学上的一个原则问题,也是物理学上无法直接验证的问题,它的意义关系到包括生命物质在内的万物生长、发展和消亡的普遍规律以及人类和宇宙的未来等问题。所以一经提出,就一直受到科学界和哲学界的广泛关注并引起激烈的争论,但尚缺乏较全面的专论。本文试图对热寂说提出的历史进行较系统的考察,并对其产生的社会影响及批判作进一步的探讨和阐述。

  一 热寂说的提出

  一般的热学和物理学史教科书都认为最早提出热寂说的物理学家是威廉?汤姆孙和克劳修斯。其实早在威廉?汤姆孙(W。Thomson)和克劳修斯(R。Clausius)一百多年前牛顿就已看出了他们后来提出的热寂说(heat death)。牛顿在其《光学》一书的疑问31(problems 31)中描述了后人在一百多年后描述的可怕的宇宙毁灭景象:地球、行星、彗星和太阳这些物体,以及它们上面所有的一切,均将冷却和凝冻,变为非活性的物体。并且所有腐烂、生长、繁殖和所有生命现象,均将停止。所有的行星、彗星将不再能留在它们的轨道上运动。这就是说,牛顿在建立自己力学体系之初,就已意识到它的体系不能解释非弹性碰撞过程(实际上就是牵涉到热交换的过程)的不可逆性与宇宙稳定性的矛盾。为了解决这一矛盾,牛顿提出了?主动原理保持和补偿运动?的物理思想。他指出:?所以,有一种按照主动保持和补偿运动的必要性,这就是重力的原因。行星和彗星由这个原理保持在轨道上,降落时物体获得大的运动,由发酵的原因,动物的心脏和血液保持永恒的运动和热量。地球内的部分持续生热,某些部分变得很热??太阳保持剧热并可见,以其光使万物变热。除去归之于这些主动原理之外,我们在宇宙间遇到的运动很少。?从这段话可以看出,虽然牛顿带有过分强烈的思辨性,但他在设法超脱机械论的局限性,希望用非机械论的解释摆脱力学带来的困难。然而在他那个时代,当能量、能量守恒定律以及各种运动形态均未出笼时,他的设想是很难有什么积极的成果的。为此,他只好求助于上帝的存在,希望上帝给以支援。他在同一书中又指出:?上帝既是宇宙的创造者,又是宇宙的持续的保持者。??没有他的治理和监督,就会一事无成。说宇宙是一架大机器,无需神的干预即可以运转下去,就如同一个时钟不需要钟表匠的帮助而继续运转那样,这种观念实际上是以把上帝说成是超凡的神灵为借口,想把天意和上帝对现实的统治排除掉。?

  随后,欧勒、拉格朗日、拉普拉斯和泊松等一批物理学家和数学家从数学分析方面发展了力学,他们证明,太阳系中所有的变动都是周期性的,这种变动不仅在某一有限范围内进行,而且其增强或减弱的变化也是周期性的。因此,他们得出结论,认为太阳系具有一种稳定性,而且在无限长的时期里,这种稳定性是永远不会改变的。从而他们从物理思想中排除了上帝,这当然是一个了不起的进步,但他们却由此而忽视了牛顿对于不可逆过程的担心,并想彻底抛弃这种忧虑,而宣布太阳系(乃至整个宇宙)将永远稳定,应该说这也是物理思想史上的一次后退。

  由以上简单的历史回顾可知,当W?汤姆孙和克劳修斯揭示了自然过程的不可逆性这一曾在历史上争论过的问题后,为什么会引起当时许多一流物理学家的高度重视!

  1852年,W?汤姆孙在关于自然界中机械能耗散的一篇论文中提出,在自然界中占统治地位的趋向是能量转变为热而使温度拉平,最终导致所有物体的工作能力减小到零,达到热寂状态。他在1862年发表了《关于太阳热的可能寿命的物理考察》论文,明确提出?热寂说?。他写道:?热力学第二个伟大定律孕含着自然的某种不可逆作用原理,这个原理表明虽然机械能不可灭,却会有一种普遍的耗散趋向,这种耗散在物质的宇宙中会造成热量逐渐增加和扩散,以及热的枯竭,如果宇宙有限并服从现有的定律,那么结果将不可避免地出现宇宙静止和死亡状态。?

  从汤姆孙这段话可以看出,他从机械能转化为热而耗散和热力学第二定律,得出宇宙热寂的观点。随后克劳修斯在1865年的论文《论热的动力理论的主要方程的各种应用形式》中得出:?这个定律在宇宙中的应用,已得出一个结论,那是汤姆孙首先得出的,因此我才发表我所说的论文。?可见克劳修斯承认汤姆孙先于他提出热寂说,并启发他做进一步的尝试。

  克劳修斯在1865年的上述论文中把宇宙看作一个孤立的绝热系统,在这个系统中热的正向变化总是大于负向变化,因此他认为宇宙热量的总和将向一个方向变化而趋于最终状态。另外他指出,他的熵只包含了?热含量?和?热离散度?,而未考虑当时已知的热辐射和由?以太?传播的热量等。他写道:?由此熵尚未用尽,还必须考虑辐射热,或以太振动方式通过宇宙空间弥散热的其它形式,以及不包括在热名义下的那些扩展更远的某种运动。?正是在上述前提下得出他表示的宇宙基本定律:1)宇宙的能量是恒定的;2)宇宙的熵趋于极大。克劳修斯在1867年作的《关于机械热理论的第二定律》的讲演中,又进一步提出:?宇宙越是接近于其熵为一最大值的极限状态,它继续发生变化的可能性就越小;当它最后完全达到这个状态时,就不会再出现进一步的变化了,宇宙将永远处于一种惰性的死寂状态。?这就是著名的克劳修斯的?热寂说?的来历。

  值得注意的是,开尔文和克劳修斯提出?热寂说?时是有所不同的,前者明确认为把热力学第二定律推广到宇宙是有条件限制的,也就是假设宇宙是一个?有限?的体系;后者并没有做这样一个限定,而是毫无条件地推广到整个宇宙。在对?热寂说?的提出者进行客观评价时,这种区别是要特别认真对待的。

  除W?汤姆孙外,在克劳修斯前提出热寂说的还有赫姆尔霍兹,这一点很久以来似乎被人们忽视了,他在1854年的一次讲演中就谈到热力学第二定律意味着整个宇宙最终将处于温度均匀的状态,并且?自此以后,宇宙将陷入永恒的静止状态?,即热寂状态。

  二 热寂说的社会影响

  热寂说的提出,在社会上引起了巨大的反响,因为它是基于严谨的科学定律而预言的?世界末日?。这种世界末日的悲观思想造成了19世纪欧美所特有的悲观情绪,使很多人因此对社会进步感到悲观失望,以致不仅自然科学家关心,人文学者也同样关心。

  美国历史学家亨利?亚当斯把它解释为19世纪所特有的低落情绪的原因,还把它与对社会进步的失望情绪相联系,正是这一观念给一些作家带来了一种对宇宙热死亡的忧郁心态。例如具有资产阶级自由思想的英国诗人斯温伯恩曾这样描述了热寂:

  不论是星星还是太阳将不再升起,

  到处是一片黑暗,

  没有溪流的潺潺声,

  没有声音,没有景色,

  既没有冬天的落叶,

  也没有春天的嫩芽,

  没有白天,也没有劳动的欢乐,

  在那永恒的黑夜里,

  只没有尽头的梦境。

  美国的物理学史家G?霍尔顿把这种没落情绪正确地归之于社会原因。他在《物理科学的概念和理论导论》一书中指出:?热寂说对于一些流行作家有一种不健康的吸引力,这些作家沉湎于席卷欧美社会某些部分的关于世界末日的悲观情绪。由于熵的增加意味着更大的无秩序的混乱,这也许就是对社会崩溃和环境衰退的一种解释!?

  这样,热力学第二定律被视为堕落的渊薮。因为它断言,一切都不免从有序走向无序,从整齐走向混乱。甚至更有人延伸说,热力学第二定律表明人种将从坏变得更坏,最终都要灭绝。总之,在19世纪末,热力学第二定律和由它导出的热寂说,已成了社会声誉最坏的科学定律。

  因此,从19世纪开始,就不断有人提出各种方案或假说来批判热寂说,试图证明热寂说只是一个佯谬,由此证明宇宙是不会热寂的。这些批判都十分令人钦佩,因为它们若成功了,就不仅拯救了物理学的名声,而且也?拯救了整个宇宙和人类?。

  三 对热寂说的批判

  长期以来,人们总以为宇宙基本上是静态的,而且在时间上既无始又无终。但按照热寂说的说法,似乎宇宙早就该处于热寂状态了。然而最使人不可理解的是,为什么现实宇宙至今并没有达到热寂状态?由于热寂说在感情上和理智上都给人以强烈的冲击,所以它问世不久,就遭到各方面的抨击。下面简要介绍对后世影响较大的两家之言以及比较流行的一些观点。

  1。对后世影响较大的两个代表性说法

  (1)?麦克斯韦妖?的提出。1871年,麦克斯韦(J。Maxwell)曾以?麦克斯韦妖?给热力学第二定律提出了一难题。他设想:一个容器分为A和B两部分,中间有一小孔,有一个小精灵能打开孔道,使快分子从A跑到B,慢分子从B跑到A,这样就在不消耗能量的情况下,使B温度升高,A温度下降。这样一来,热量自动从低温部分传向高温部分,系统的熵降低了,热力学第二定律受到了挑战。人们称这个小精灵为?麦克斯韦妖?。一百年来,?麦克斯韦妖?对许多物理学家一直有很大的诱惑力。麦克斯韦认为,只有当我们能够处理的只是大块的物体而无法看出或处理借以构成物体分离的分子时,热力学第二定律才是正确的,并由此提出应当对热力学第二定律的应用范围加以限制。然而1929年,匈牙利物理学家西拉德揭开了?麦克斯韦妖?之谜。他指出:麦克斯韦妖有获得和储存分子运动信息的能力,它靠信息来干预系统,使它逆着自然界的自发方向进行。1951年布里渊更明确指出,妖精要识别分子,它必须有一个温度与环境不同的微型光源去照亮分子,这就要输入能量,按现代的观点,信息就是负熵,正是麦克斯韦妖将负熵输给了系统,才降低了系统的总熵。麦克斯韦妖正是以此为代价,才获得了所需要的信息(即负熵)的这额外的熵的产生,补偿了系统里熵的减少,从而引起熵的增加。他由此断言妖精是不存在的。

  (2)玻尔兹曼的质疑。1872年玻尔兹曼(L。Bo?ltzmann)也指出:热力学在局部范围内是正确的,但它不是绝对的规律。他首先赋予熵的增加以统计解释,按照这样解释热平衡态总是伴随有涨落现象,后者是不遵守热力学第二定律的。在宇宙的某些局部可以偶然地出现巨大的涨落,在那里熵没有增加,因此宇宙也就不可能产生热寂,甚至还在减少,因此宇宙也就不可能产生热寂。玻尔兹曼这种?涨落说?有一定的吸引力,但尚缺乏事实根据。天文学观测表明,至今没有任何有说服力的证据说明现在的宇宙是处在热平衡态并存在着上下?涨落?。而且从逻辑上看,玻尔兹曼的?涨落说?实际上是把宇宙?热寂?已经放在他的前提中了,因而他首先承认?涨落?是在平衡态附近发生的。而对于任何?涨落?,不论它有多大,最后必然会消失,重新回到平衡状态。尽管后来一些物理学家,如莱辛巴赫(H。Reihenbaeh)等发展了玻尔兹曼的思想,把时间增加的方向作为熵增加的方向,并进一步指出了存在着熵的涨落现象,但同样由于缺乏观测证据支持而最终被放弃。

  2。恩格斯对热寂说的批判

  由于?热寂说?涉及到宇宙未来和人类命运等重大问题,因而也引起了哲学界,尤其是马克思主义哲学的深刻关注,一百多年来,恩格斯对?热寂说?的批判产生了深远的影响。

  ?热寂说?刚刚提出,恩格斯就在1869年3月2日致马克思的信中指出,这种理论认为,世界愈来愈冷却,宇宙中的温度愈来愈平均化,因此,最后将出现一个一切生命都不能生存的时刻,整个世界将由一个围着一个转的冰冻的球体所组成。我现在预料神父们将抓住这种理论,把它当作唯物主义的最新成就,用来作为?必须设想有上帝存在?的论证,而这种论证实质上是与辩证唯物论背道而驰的。

  恩格斯在其《自然辩证法》导言中,又从能量守恒与转化的观点出发,对热寂说也作了精辟的分析和批判。他指出:?散射到太空中去的热必须有可能以某种方法??阐明这种方法将是以后自然科学的课题一转变为另一种运动形态,在这种运动形态中它能够重新集结和活动起来。?恩格斯依据天文观测资料?新星之突然地闪现以及熟知的旧星的突然增加光亮?指出散射到太空中的热能有重新集结的可能,他坚持辩证自然观的正确性,因此他写道:?我们确信,物质在它的一切变化中永远是同一的,它的任何一个属性都决不会丧失,因此它在某个时候以铁的必然性毁灭自己在地球上的最高的花朵??思维着的精神,而在另外的某个地方和某个时候又一定以同一种铁的必然性把它重新产生出来。?

  3。曾广为流行的其它观点

  (1)熵增加原理只对孤立系统成立,目前我们没有任何根据说宇宙是这样的一个封闭的孤立系统。把在有限时空范围内得到的原理任意推广到整个宇宙是难以置信的。

  (2)对整个宇宙而言,既存在着从有序向无序转化的过程,即熵增加过程,也存在着无序向有序转化的过程,即熵减少过程。因此,耗散结构理论认为宇宙在历史的长河中,熵只是在不断地增加的结论,是没有什么根据的。耗散结构理论认为,对于非孤立系统,熵的变化可以形式地分为两部分。一部分是由于系统内部的不可逆过程引起的,叫做熵产生,用dis表示。另一部分是由于系统和外界交换能量或物质而引起的,叫做熵流用des表示。所以整个系统的熵变化是ds=dis+d3s一个系统的熵产生永远不可能是负的,即总有diS?0,对于孤立系统,由于des=0,所以ds=dis>0,这就是熵增加原理的表达式。

  但对于非孤立系,视外界的作用不同,熵流des可正、可负。如果des<0,且|des|>dis,就会有ds=dis+des<0,这表示经过这样的过程,系统的熵会减小,系统就由原来的状态进入更加有序的状态。这就是说,对于一个封闭系统或开放系统存在着由无序向有序转化的可能。为此《 *** 》曾于1980年发表特稿,宣称普里高津的耗散理论帮助人类解决了一项科学上最扰人的似是而非的问题。然而,尽管这种理论具有很广的应用范围,但对于整个宇宙来说,由于缺乏明确的物理图象和实验基础而不被天体物理学界所认可。

  (3)熵增加原理的严格表述是:?一个热力学系统从一个平衡态出发,经过绝热过程,到达另一个平衡态,它的熵不减少。?这里很重要的一点是,体系在过程的开始和过程的终了都处在平衡态。而对于宇宙来说,在我们知识所及的历史年代里,宇宙一直处于远离平衡状态之中。因此,说我们所及的历史年代中宇宙的熵不断增加是没有根据的。四热寂说的终结

  多少年来我们总有这样的感觉,对已有的对热寂说的批判说服力不强,并没有真正解决问题。1948年,美籍俄裔物理学家伽莫夫(G。Gamow)和他的同事提出了一个?大爆炸?的宇宙理论,使热寂说的佯谬迎刃而解。

  热寂说是以宇宙整体正在从非平衡趋于平衡的结论为前提的。然而大爆炸宇宙学的研究和观测表明,宇宙起源于150亿年前?原始火球?的一次大爆炸,大爆炸之后宇宙一直在膨胀。它不是趋于平衡,而是越来越趋于不平衡。按照熵增加原理,只对于每个静态的封闭体系,熵才有个固定的极大值Smax;对于膨胀着的系统,每一瞬时熵可能达到的极大值Smax一是与时俱增的。如果膨胀得足够快,系统不但不能每时每刻跟上过程以达到新的平衡,而且实际上熵值S的增长落后于Smax的增长,二者的差距越拉越长。虽然系统的熵不断增加,但它距平衡态却愈来愈远。我们的宇宙中发生的正是这种情况。

  大爆炸宇宙理论得到了三个强有力的直接证据的支持,即哈勃红移、氦元素丰度和3K微波背景辐射。1929年,美国天文学家哈勃(E。Hubble)在研究了前人测量的星系距离资料后发现,这星系光谱线的颜色要比近星系的稍红一些,哈勃仔细的测量了这种红化,发现它呈系统性变化,而且,星系愈远,光谱线红移愈大,在进一步测定了许多星系光谱中特征谱线的位置后,哈勃证实了这个效应,并指出红移现象的产生是由于星系在退行而使光波变长的结果。由此,他总结出了著名的哈勃定律:星系退行的速度与距离成正比。从哈勃定律人们会很自然地得出宇宙在膨胀的推论。这个重大发现奠定了现代宇宙学??大爆炸理论的基础。

  支持大爆炸宇宙论的第二个证据是宇宙中氦元素丰度的预言和测定。大爆炸发生一秒钟以后,宇宙是由极高温的基本粒子组成的?羹汤?,这时整个宇宙处于均匀的热平衡态。随着宇宙的膨胀和降温,其中的一些粒子逐次与其余部分粒子脱耦。此时产生的核反应使中子和质子聚合在一起,形成氦核,余下的核子(没有聚合的质子)自然就形成了氢核。精确的理论计算表明,当时应有23。6%的物质质量聚合成了氦核,英国皇家格林威治天文台对众多星系中原始星云的发射光谱进行观测的结果表明,宇宙中氦的实际丰度为23。5%。这一结果与大爆炸的理论预言极为相符。

  支持大爆炸理论的第三个证据是3K微波背景辐射的发现。大爆炸理论预言,现在的宇宙中应该存在着一种来自宇宙早期的均匀的、各向同性的微波背景辐射,它是宇宙早期的遗迹,频谱应该符合普朗克黑体辐射公式,温度约为3K。1965年这一预言被射电天文学家彭齐亚斯(A。Penjias)和威尔逊(R。Wilson)在宇宙观测中证实,此后亦为众多科学家进一步证实。这一结果表明,宇宙早期曾一度处于平衡态,处处都有相同的温度,而且物质也是相当均匀的,非均匀性不超过10??5,大爆炸之后,宇宙才逐渐偏离热平衡态,而今天宇宙中物质分布的不均匀性已高达10?103。

  另一方面,宇宙膨胀的原因是由于引力的作用。有引力作用的热力学与无引力作用的热力学得出的结论完全不同。在不考虑引力的经典热力学中,加热则体系升温,冷却则体系降温,热容量是正值。而在一个自引力体系中情况则刚好相反,加热则体系变冷,放热则体系升温,热容量是负值。而负热容物体的存在对于热力学来说具有根本性的影响。在一个体系中,如果同时存在着正热容物体和负热容物体,那么这个体系就具有极大的不稳定性。稍有扰动,平衡就会彻底遭到破坏而产生温差。因此,只要有引力体系存在,原则上就不存在稳定的热平衡,而宇宙间的天体或天体系统大多数正是这种引力系统。尽管自引力系统中熵是增加的,但由于没有热平衡,因而熵的增加是无止境的,永远没有极大值。

  因此,?热平衡的存在对整个热力学是至关重要的,热平衡是热力学的出发点,而对于引力起作用的体系,实际上不存在热力学意义上的热平衡态,而是不稳定的状态。?这种现象在静态宇宙模型中是不可能发生的,也是开尔文和克劳修斯等人没有料想到的。

  总之,热寂说的要害在于未考虑宇宙的膨胀和引力效应。随着宇宙的膨胀,辐射与粒子温度下降速度的不同,即使原来温度相同的系统也会因为辐射与粒子温度下降速度不同而形成温度差,这同热力学第二定律的结论不同。此外,在宇宙系统中,引力起着重大作用,前苏联理论物理学家朗道认为当考虑宇宙的大区域时,引力起了重要作用,涉及范围愈大,引力的作用就愈大。在一定范围内,会出现弥散物质的聚集现象,宇宙中的星系很可能就是这样形成的。这是与熵增加原理不同的物理过程。因此,考虑到宇宙的膨胀及引力效应,宇宙热寂是不可能实现的。

?

  当然,今天的宇宙观尚不能预卜宇宙的最终结局,但这些未尽之页已不属于热寂说,而是新的一章了。

宇宙中最高的温度能达到多少?目前最高的温度是多少?

宇宙形成后10负36次方秒,宇宙温度达到10000亿亿亿 ,而人类观测到的最高温度是伽马射线爆,几分钟释放的能量可以达到太阳1万亿年释放的能量总和。

目前通过观测宇宙,认为宇宙最初形成于同一处,星系红移和宇宙微波背景的观测,让我们知道宇宙在不断扩张和逐渐冷却,也可以推测出各星系在最初时距离比较近,因此推断所有星系都有一个共同起源。试想一下将现在930亿光年直径的宇宙,压缩在一个很小的地方,密度趋近于无限,引力作用产生的能量也是非常非常庞大的,温度也就非常高。具体有多高说不清,大概比人类所能观测到的高得多的多。

伽马射线爆是超大质量恒星坍塌碰撞、中子星碰撞或者黑洞融合的时候,因为巨大的质量损失转化来的能量,是宇宙中最剧烈的爆炸。通常只能持续很短的时间,也有发现能持续数小时的。几分钟释放的能量可以达到太阳1万亿年释放的能量总和,温度也就异常之高,喷发出的能量扫过的地方,没有生命可以存在。但是它们又为新恒星的形成提供了契机,被喷射出的物质能量散布在宇宙空间,逐渐凝聚又形成恒星。

具体温度有多高不好说,但仅从人类观测的结果来说,短短几秒释放一万亿年太阳释放的能量综合,顺便提一下太阳寿命也才只有百十亿年,温度可以达到1万亿摄氏度以上,甚至高到难以想象。

关于这个问题,首先要知道温度究竟是怎么回事。从化学上来看,原子、离子和分子是物体的基本组成。组成物体的粒子的热运动是物体产生温度的根本原因,所以温度的高低表示了粒子热运动的平均动能的大小。如果粒子热运动的平均动能越大,即粒子的热运动越剧烈,则温度也越高。可见,粒子的平均动能决定着温度的高低。

由于不确定性原理,粒子的热运动不可能会完全停止下来,所以温度有一个下限,那就是绝对零度,它被定义为0 K,或者相当于-273.15 。再根据狭义相对论,组成物体的粒子的运动速度不可能达到光速,所以温度有一个上限,那就是普朗克温度,其大小约为1.4 10^32 K。或者根据黑体辐射理论和物理学的基本长度,物体辐射出的电磁波的波长只能大于等于普朗克长度,所以普朗克温度是温度的上限。

目前的理论认为,只有在宇宙大爆炸的普朗克时间(5.4 10^-44秒),温度才有达到过普朗克温度。目前在宇宙中已知最高温度是在双中子星合并过程中产生的,温度为3500亿度。而人类制造的最高温度比这还高,大型强子对撞机把高速运动的质子和原子核相撞,产生的最高温度可达10万亿度。

热力学温标里面,温度的理论下限是“绝对零度”,理论上限叫做“绝对热”(absolute hot),与绝对零度相对应。

在当代物理宇宙学理论下,可能的最高温度是普朗克温度,其值为1.416785(71) 10^32K。

【有绝对零度(absolute zero),也有绝对热(absolute hot)】

该如何理解普朗克温度?可以从两个方面去理解:

一、宇宙大爆炸之后,经过了普朗克时间(5.39 10^ 44s)后,宇宙的温度。在小于普朗克时间的尺度里,我们的物理理论失效,虽然那时候宇宙可能更热,但超越我们的认知极限了。

二、如果一个物体达到普朗克温度,它将发出对应于普朗克长度(1.616255(18) 10^ 35 m)波长的黑体辐射。如果温度更高,它将发出比普朗克长度更低波长的黑体辐射,我们缺乏相应的理论,失效again。

【越高的温度所对应的的黑体辐射波长峰值越小。】

----华丽分割,以上理论,以下现实----

普朗克温度只是一个根据量纲分析得来的理论温度,并没有什么现实意义。回归现实,还是要看看我们现实宇宙中的物质能够被加热到什么样的温度。

20世纪60年代,在欧洲核子研究委员会(CERN)工作的哈格多恩提出,在温度超级高的情况下,强子都将“熔化”(melt),所有我们熟悉的由强子组成的物质都将变成一碗“夸克汤”,经过计算,这个温度大约在2 10^12K,因此被称为“哈格多恩温度”。哈格多恩认为,处于哈格多恩温度下的系统可以容纳尽可能多的能量,因为形成的夸克提供了新的自由度,继续增加能量将只会增加熵,而不是温度,因此哈格多恩温度将是一个无法通过的绝对高温。

【德国物理学家哈格多恩】

也有反对者认为,夸克物质也可以被进一步加热。

这个分歧已经可以用实验来验证了,10^12K温度级别对现代的人类来说,已经不是难事。这种夸克物质已经在欧洲核子研究中心的SPS和LHC,以及美国布鲁克海文国家实验室的RHIC的重离子碰撞中被发现。

在弦论中,也引入了这个“哈格多恩温度”,它被定义为让宇宙最基本的单元:弦所发生相变所需的温度。这个温度非常高,在10^30K级别,只比普朗克温度少了两个数量级,人类目前只能望尘莫及了。

近年来,又有人提出,在量子热力学中,某些系统可以达到“负温度”。

其实,“负温度”的系统比任何正温度的系统都要热。如果负温系统和正温系统接触,热量将从负温系统流向正温系统。这不是矛盾了吗?明明是负,怎么会比正的还热呢?

为了解决这一矛盾,科学家创造出了“冷度”这个物理量,为温度和玻尔兹曼常数乘积的倒数,从而解决了这一矛盾。温度为正的系统,熵值随着能量的增加而增加,温度为负的系统,熵值随着能量的增加而减少。所以,负温度是为了解释一些量子现象而引入的概念,在非量子体系下没有意义。

如上图,绿色为摄氏温度,红色为华氏温度,蓝色是开氏温度,黑色就是“冷度”,单位为“吉比特/纳焦耳”。这里的开氏温度以绝对零度为0,而以无限温度(可能是普朗克温度)为1,则越过了中间高点以后,再“高”的温度其实是“负温度。”

当今没有任何人能准确的回答这样的问题。因为,人类远没有了解宇宙的皮毛,更何况具体问题。现在对宇宙下的任何结论都基于狂想,哪怕你掌握了一定的所谓科学手段,现在世界上有几个人弄懂了什么叫科学呢?

宇宙最高温度源于宇宙大爆炸之后5.391 10( 44次方) s,最高值为1.417 10(32次方) C。目前宇宙的最高温度记录是人类实验室创造的温度,比宇宙中最猛烈的超新星爆发温度高很多倍。以下列举几个高温示例。太阳表面温度5500 C;闪电28000 C;太阳核心1600万 C;核武器3.5亿 C;大质量恒星最后一天的核心温度30亿 C;融合中的双中子星系统3500亿 C;相对论重离子对撞机1万亿 C;CERN质子-核碰撞10万亿 C。人类实验室创造出来的最高温度只在宇宙大爆炸后一瞬间曾经达到过,模拟创造此温度持续的时间极短,范围极小,但却可以帮助科学家 探索 宇宙成因。宇宙大爆炸最初的温度无法超越,目前宇宙中所有的能量和物质都源于宇宙大爆炸奇点的能量。谈论比奇点还高的温度没有现实意义。

都说最高温是宇宙大爆炸的瞬间,不过这是人类猜测而已,毕竟谁也没见过,看过许多天文知识的人或者会感觉,所有天文知识都是猜想出来的,有些被许多人认同,所以显得十分正确而已。其实像看玄幻仙侠 差不多,你信就觉得它合理,你不信就觉得它吹牛。

别说出了地球,单在地球内,谁也不知道最高温度是多少,或者个个都会说是地心内核,那有谁真正测量过地心的温度吗?还不是靠推测的。前苏联曾经想过钻一口深阱打穿地壳,做所谓的科学研究,结果不了了之。

靠猜测的东西,大家都能吹,没什么大不了的。目前,我们只能猜测星系中心是温度最高的,像银河系中心,注意:这个数据是人类猜测得来的,没谁去过银河中心量过。

至于最低温度,在漆黑的太空里四处隐藏,你找到其中一个冷点不代表它是最冷的。

看了几个别人的回答,忍不住要回答一波了。

热力学温度的基础是粒子运动,就是单纯的运动产生热,叫做热运动都是狭隘的。

产生热的根本要素只有一个,那就是——压力。

当我们拿着锤子砸铁,砸钉子,砸石头时,施加的只是单纯的压力。

图:砂轮切割,也是压力

当我们那锯子锯木头时,看似是施加的摩擦,其实还是压力。是锯齿的来回压迫了木头。

再有就是雪糕在夏天会冒热气,这个也是压力产生的。水分子结冰要的不只是零度,还有标准大气压这个环境。

在物理中:没有热运动,只有运动产生热。没有普朗克温度,没有最高,只有更高。

霍金说有黑洞,黑洞是大质量恒星坍缩而成的,在黑洞里已经没有粒子了,没原子,没有中子质子,没有夸克。因为天体物理学家们在寻找白矮星、中子星、夸克星,这些致密天体都不是黑洞, 黑洞的巨大压力已经压碎了夸克。

连夸克都没了,你跟人说普朗克温度,这是不是扯

目前,宇宙中最大的黑洞还没有找到,甚至连想象都无法想象。那么黑洞的压力大到什么程度,其内部温度就能高到什么地步。

再说超新星

超新星是大质量恒星核聚变结束后,内部失去了高热,表层物质极速往中心坍塌,挤压,就跟小孩子玩的摔炮是一样的,使劲儿摔在地上,压力挤压炸药发生了爆炸。

大质量恒星死亡时表层物质坍塌也会对中心造成巨大的压力,从而发生爆炸。爆炸的原理就是分子、原子、中子、质子等粒子被高压给挤碎了。这个叫做 引力干掉了强核力、弱核力、电磁力。

在于宇宙中,真正的王者之力就是引力。爱因斯坦说引力是物质扭曲了时空。

但他并没有说物质是如何扭曲时空的,怎样扭曲时空的。所以他的理论只是在描述表象,并没有谈到物质和时空的关系。

在物理学中,有正反粒子碰撞湮灭说法,这个也得到了证实。那么湮灭是什么呢,就是能量质量消失了,虽然也有释放一部分,但多数还是没了,不知道去了哪里。否则不能叫湮灭,只能叫消散,分解。

正反物质粒子为何会湮灭

我不是科学家,我不敢猜测,但是我觉得应该跟“时空”有关系。时空原本是均匀的,以前的牛顿就是这么认为的,不管是时间还是空间,在牛顿那里不扭曲。

爱因斯坦不认为时空是均匀的,他认为时间可以快慢不同,空间也可以拧巴扭曲。行星环绕恒星做圆周运动,就是行星的质量和速度与所处时空达到了平衡,所以才不会逃离,不会掉进太阳。

这个很好理解,就如同一块木头我们扔到水里,可以在木头上加铁,等木头的密度跟水的密度一致时,就会停在水中某一高度。

大海的水深浅不同,水的密度和压力也不同,我们扔一块跟水面密度差不多的物体下去,这个物体无论如何也沉不到海底,但它也不会浮出水面,而是停留在一定的高度,这就是物体与那个高度深度的水达到了平衡。

再有就是气球,我们松开手气球会往天上飞,若不考虑气球材质,认为它不会爆掉,那么气球也不会飞到大气层顶端,而是停在一定的高度。

飞机,鸟儿在天上飞,道理也是一样的,是其下方的气流密度超过了飞机鸟儿自身密度,这才将其托在天上。

行星绕恒星公转,其轨道所在就是它自身质量和速度与周围的时空达到了平衡。

人类发射的卫星也是一样的,上天之后,若想在某一个高度在轨运动,只需要调整自身的速度就可以了。

这个速度其实就是物质对时空施加压力,和物质自身质量扭曲时空是一样的,两个都是在挤压,扭曲时空。就像飞机,鸟儿压缩身下的空气,就像船只压缩水面。

既然物质能对时空施加压力,能扭曲时空,这说明物质和时空的关系类似飞机与空气,类似船只与海水河水。

那么,物质和时空在更高维度上,它们其实是一种东西。时空在达到特殊的条件会崩塌,崩塌的碎片就是我们所认为的物质,能量。

时空崩塌了一块,周围的时空挤压过来填补。而物质既然和时空同源,它处在时空中,也会挤压时空,从而改变时空的密度。

这就是爱因斯坦的物质扭曲时空的原理。当然,这是我个人脑补的,猜测的。

既然物质时空同源,正反粒子碰撞湮灭,就是物质粒子又转化成了时空(可能存在时空粒子)。

我们知道了时空是什么,也就能理解宇宙是什么了,最高层次的存在还是时间和空间。

那宇宙中最高温度是多少度呢?那就是时空破碎时的温度。

怎样破碎时空?可能是宇宙奇点大爆炸,可能是超新星爆发,可能是黑洞爆炸。

至于温度的下限,有说是绝对零度的,可那个依旧局限在物质分子,原子,中子,质子,电子层面。

绝对零度是物质的最低温度,并不是宇宙的最低温度。

宇就是空间,宙就是时间。宇宙是时空,最高温度就是宇宙崩塌时的温度,所以多高已经没有意义了,宇宙都崩塌了,我们也就不存在了。

文/杨三

宇宙中最高的温度能达到1.416833x10 32K,也就是构成本宇宙所有物质的爆炸释放能量的极限温度(宇宙大爆炸了极限温度)。宇宙中最低温度一273.15 。目前宇宙中测量到最高的温度,就是超新星爆炸释放的能量使温度达到20亿 (高度文明智慧人类(外星人)测量到了。

没有证据的推测我都视为无效,凭我们人类掌握的知识还不能说明什么,太阳系的东西都还有一堆问题没有说清楚,就越级说宇宙的事了,说了就像是梦话。

30兆亿的高温热能是人工发明

标签: #宇宙中最高的温度能达到多少目前最高的温度是多少_恐惧新星普朗克什么时候出的